نموذج اجابة امتحان التخلفات للفصل الدراسي الأول 2016- 2017

Chemistry

Question (2)

(22 Marks)

- (a) Define each of the following:
 - (i) The first law of thermodynamics.
 - (ii) Bond enthalpy.
 - (iii) Molar heat capacity.
 - (iv) Thermochemical equation.

Answer

- (i) In any process the total change in energy of the system ΔE is equal to the sum of the heat q and the work w transferred between the system and the surroundings $\Delta E = q+w$.
- (ii) The bond enthalpy is defined as ΔH when one mole of bonds is broken in the process state
 - in the gaseous state
- (iii) The amount of heat required to raise the temperature of one mole of substance one degree centigrade.
- (iv) Thermochemical equation is defined as a balanced chemical equation, together with its value of ΔH

(b) Calculate the amount of heat q for the following processes:

- (i) An endothermic process in which the system receives 12J of work from its surrounding and the change of internal energy is 77J.
- (ii) Converting 55 g of ethanol C_2H_5OH from liquid to vapor at its boiling point if the heat of vaporization is 38.5 KJ/mole.
- (iii) Increasing the temperature of 100 g of copper from 10°C to 100°C the specific heat of copper is 0.389 J/g °C.

Answer

Answer:

(i) $\Delta E = q + w$

77=q+12 \rightarrow q=65 J

(ii) number of moles of 55 gm of C₂H₅OH= $\frac{55}{46}$ =1.19

1 mole \rightarrow 38.5

1.19 \rightarrow ?? \therefore q=46.032 KJ

(iii) $q=s \times m.\Delta T=0.389 \times 100 \times 90=3501 \text{ J}$

(c) Standard heat of formation ΔH_f^0 of $C_2H_4_{(g)}$, $CO_2_{(g)}$ and $H_2O_{(\ell)}$ are, 52.3KJ/mole ,-393.5 KJ/mole and -285.8 KJ/mole respectively. Determine the heat of combustion of one mole of $C_2H_4_{(g)}$

$$C_2H_4 (g) + 3 O_2 (g) \rightarrow 2CO_2(g) + 2H_2O_{(L)}$$

Answer

 $\Delta H^{o}_{r} = \sum \Delta H^{o}_{f \text{ products}} - \sum \Delta H^{o}_{f \text{ rectants}}$

 $= (2\Delta H_{f}^{o} CO_{2(g)} + 2\Delta H_{f}^{o} H_{2}O_{(\ell)}) - (\Delta H_{f}^{o} C_{2}H_{4(g)} + 3\Delta H_{f}^{o} O_{2(g)})$ = $\{2 \times -393.5 + 2(-285.8)\} - \{52.3 + (3) \times (0)\} = -1410.9 \text{ KJ/mol}$

(e) If $\Delta E = -1254.3 \text{ kJ}$, at 25°C. Calculate ΔH for the reaction

$$C_2H_{2(g)} + 2.50 O_{2(g)} \rightarrow 2CO_{2(g)} + H_2O_{(g)}$$

Answer

 $\Delta H = \Delta E + \Delta nRT$ $\Delta H = -1254.3 + (-0.5)(8.31 \times 10^{-3} \times 298)$ $\Delta H = -1255.5 \text{ KJ/mol}$

Dr. Shahera Shohyeb