نموذج اجابة امتحان التخلفات للفصل الدراسى الأول 2016-2017

Chemistry

Question (2)

(22 Marks)
(a) Define each of the following:
(i) The first law of thermodynamics.
(ii) Bond enthalpy.
(iii) Molar heat capacity.
(iv) Thermochemical equation.

Answer

(i) In any process the total change in energy of the system ΔE is equal to the sum of the heat q and the work w transferred between the system and the surroundings $\Delta E=q+w$.
(ii) The bond enthalpy is defined as ΔH when one mole of bonds is broken in the gaseous state
(iii) The amount of heat required to raise the temperature of one mole of substance one degree centigrade.
(iv) Thermochemical equation is defined as a balanced chemical equation, together with its value of ΔH
(b) Calculate the amount of heat q for the following processes:
(i) An endothermic process in which the system receives 12J of work from its surrounding and the change of internal energy is 77 J .
(ii) Converting 55 g of ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ from liquid to vapor at its boiling point if the heat of vaporization is $38.5 \mathrm{KJ} / \mathrm{mole}$.
(iii) Increasing the temperature of 100 g of copper from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ the specific heat of copper is $0.389 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

Answer

Answer:
(i) $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
$77=\mathrm{q}+12 \rightarrow \mathrm{q}=65 \mathrm{~J}$
(ii) number of moles of 55 gm of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\frac{55}{46}=1.19$

1 mole $\rightarrow 38.5$
$1.19 \quad \rightarrow \quad ? ? \quad \therefore \mathrm{q}=46.032 \mathrm{KJ}$
(iii) $\mathrm{q}=\mathrm{s} \times \mathrm{m} . \Delta \mathrm{T}=0.389 \times 100 \times 90=3501 \mathrm{~J}$
(c) Standard heat of formation $\Delta \mathrm{H}_{\mathrm{f}}^{0}$ of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \mathrm{CO}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2} \mathrm{O}_{(\ell)}$ are, $52.3 \mathrm{KJ} / \mathrm{mole}$, $-393.5 \mathrm{KJ} / \mathrm{mole}$ and $-285.8 \mathrm{KJ} /$ mole respectively. Determine the heat of combustion of one mole of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$

$$
\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}
$$

Answer

$$
\Delta \mathrm{H}_{\mathrm{r}}^{\mathrm{O}}=\sum \Delta \mathrm{H}_{\mathrm{f} \text { products }}^{\mathrm{o}}-\sum \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \text { rectants }
$$

$$
\begin{aligned}
& =\left(2 \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{CO}_{2(\mathrm{~g})}+2 \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{H}_{2} \mathrm{O}_{(\ell)}\right)-\left(\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+3 \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{O}_{2(\mathrm{~g})}\right) \\
= & \{2 \times-393.5+2(-285.8)\}-\{52.3+(3) \times(0)\}=-1410.9 \mathrm{KJ} / \mathrm{mol}
\end{aligned}
$$

(e) If $\Delta E=-1254.3 \mathrm{~kJ}$, at $25^{\circ} \mathrm{C}$. Calculate ΔH for the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+2.50 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Answer

$$
\begin{aligned}
& \Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{nRT} \\
& \Delta \mathrm{H}=-1254.3+(-0.5)\left(8.31 \times 10^{-3} \times 298\right) \\
& \Delta \mathrm{H}=-1255.5 \mathrm{KJ} / \mathrm{mol}
\end{aligned}
$$

